Anemia de Fanconi, Parte 2. Estrategia metodológica para el diagnóstico molecular en pacientes con anemia de Fanconi
Resumen
La anemia de Fanconi es una enfermedad rara, se presenta en 1-5/millon de nacidos vivos. Los pacientes presentan a nivel celular inestabilidad cromosómica, que es la base para su diagnóstico y aunque clínicamente son heterogéneos, hay tres características generales: alteraciones del desarrollo físico, pancitopenia y alto riesgo a desarrollar cáncer. Presenta heterogeneidad genética, ya que se origina por variantes patogénicas en alguno de los 22 genes de la vía FA/BRCA, 20 de estos genes se heredan de manera autosómica recesiva, uno autosómica dominante y uno ligada al X. Debido a esta heterogeneidad, el diagnóstico molecular es complicado, por lo que se necesita una estrategia con varias metodologías. El primer abordaje es la detección de deleciones largas con el ensayo de amplificación de sondas dependiente de ligandos múltiples (MLPA) en los genes FANCA, FANCD2, FANCN/PALB2 y FANCB. Los casos no resueltos por MLPA se canalizan a secuenciación de nueva generación, ya sea por panel dirigido (16 genes FANC), o por secuenciación del exoma completo, finalmente si todavía tenemos pacientes sin genotipo realizamos microarreglos de alta resolución, que constan de sondas a lo largo del genoma para detectar polimorfismos de un solo nucleótido y variaciones en el número de copias, para la búsqueda de grandes deleciones o duplicaciones en los genes FANC, así como para la detección de regiones con homocigosidad, con el propósito de encontrar alelos homocigotos. En este artículo, presentamos la estrategia detallada para realizar la genotipificación de los pacientes AF mexicanos, con un porcentaje de éxito del 80%.
Citas
García-de-Teresa B, Rodríguez A, Frias S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes (Basel). 2020 Dec;11(12).
Niraj J, Färkkilä A, D’Andrea AD. The Fanconi Anemia Pathway in Cancer. Annu Rev cancer Biol. 2019 Mar;3:457–78.
Li LH, Ho SF, Chen CH, Wei CY, Wong WC, Li LY, et al. Long contiguous stretches of homozygosity in the human genome. Hum Mutat. 2006 Nov;27(11):1115–21.
Pajusalu S, Žilina O, Yakoreva M, Tammur P, Kuuse K, Mölter-Väär T, et al. The Diagnostic Utility of Single Long Contiguous Stretches of Homozygosity in Patients without Parental Consanguinity. Mol Syndromol. 2015 Sep;6(3):135–40.
Wang JC, Ross L, Mahon LW, Owen R, Hemmat M, Wang BT, et al. Regions of homozygosity identified by oligonucleotide SNP arrays: evaluating the incidence and clinical utility. Eur J Hum Genet. 2015 May;23(5):663–71.
Chaves TF, Oliveira LF, Ocampos M, Barbato IT, de Luca GR, Barbato Filho JH, et al. Long contiguous stretches of homozygosity detected by chromosomal microarrays (CMA) in patients with neurodevelopmental disorders in the South of Brazil. BMC Med Genomics. 2019 Mar;12(1):50.
Stuppia L, Antonucci I, Palka G, Gatta V. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci. 2012;13(3):3245–76.
Hömig-Hölzel C, Savola S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagnostic Mol Pathol Am J Surg Pathol part B. 2012 Dec;21(4):189–206.
Ameziane N, Errami A, Léveillé F, Fontaine C, de Vries Y, van Spaendonk RML, et al. Genetic subtyping of Fanconi anemia by comprehensive mutation screening. Hum Mutat. 2008 Jan;29(1):159–66.
Castella M, Pujol R, Callén E, Trujillo JP, Casado JA, Gille H, et al. Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations. Blood. 2011 Apr;117(14):3759–69.
Kimble DC, Lach FP, Gregg SQ, Donovan FX, Flynn EK, Kamat A, et al. A comprehensive approach to identification of pathogenic FANCA variants in Fanconi anemia patients and their families. Hum Mutat. 2018 Feb;39(2):237–54.
Kalb R, Neveling K, Hoehn H, Schneider H, Linka Y, Batish SD, et al. Hypomorphic mutations in the gene encoding a key Fanconi anemia protein, FANCD2, sustain a significant group of FA-D2 patients with severe phenotype. Am J Hum Genet. 2007 May;80(5):895–910.
Flynn EK, Kamat A, Lach FP, Donovan FX, Kimble DC, Narisu N, et al. Comprehensive analysis of pathogenic deletion variants in Fanconi anemia genes. Hum Mutat. 2014 Nov;35(11):1342–53.
Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, et al. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet. 2007 Feb;39(2):159–61.
Jung M, Ramanagoudr-Bhojappa R, van Twest S, Rosti RO, Murphy V, Tan W, et al. Association of clinical severity with FANCB variant type in Fanconi anemia. Blood. 2020 Apr;135(18):1588–602.
Coffa J, van den Berg J. Analysis of MLPA Data Using Novel Software Coffalyser.NET by MRC-Holland. In: Eldin AB, editor. Modern Approaches To Quality Control [Internet]. Rijeka: IntechOpen; 2011. Available from: https://doi.org/10.5772/21898
Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, et al. Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines: A Joint Recommendation of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn. 2018 Jan;20(1):4–27.
Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: An overview. Hum Immunol. 2021 Nov;82(11):801–11.
Voelkerding K V, Coonrod EM, Durtschi JD, Margraf RL. Next-Generation Sequencing: Principles for Clinical Application BT - Molecular Pathology in Clinical Practice. In: Leonard DGB, editor. Cham: Springer International Publishing; 2016. p. 889–909. Available from: https://doi.org/10.1007/978-3-319-19674-9_59
Qin D. Next-generation sequencing and its clinical application. Cancer Biol Med. 2019 Feb;16(1):4–10.
den Dunnen JT. Efficient variant data preparation for Human Mutation manuscripts: Variants and phenotypes. Vol. 40, Human mutation. United States; 2019. p. 1009.
Rizzo JM, Buck MJ. Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res (Phila). 2012 Jul;5(7):887–900.
Sroka I, Frohnmayer L, Wirkkula L. Fanconi Anemia Clinical Care Guidelines [Internet]. Fifth Edit. Vol. 1, Fanconi Anemia Research Fund, Inc. 2020. 1–276 p. Available from: http://marefateadyan.nashriyat.ir/node/150
Bogliolo M, Schuster B, Stoepker C, Derkunt B, Su Y, Raams A, et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am J Hum Genet. 2013 May;92(5):800–6.
Hira A, Yoshida K, Sato K, Okuno Y, Shiraishi Y, Chiba K, et al. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am J Hum Genet. 2015 Jun;96(6):1001–7.
Shamseldin HE, Elfaki M, Alkuraya FS. Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation. J Med Genet. 2012 Mar;49(3):184–6.
Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med Off J Am Coll Med Genet. 2013 Sep;15(9):733–47.
McCombie WR, McPherson JD, Mardis ER. Next-Generation Sequencing Technologies. Cold Spring Harb Perspect Med. 2019 Nov;9(11).
Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, et al. Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform. 2014;13(Suppl 2):67–82.
DePristo MA, Banks E, Poplin R, Garimella K V, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011 May;43(5):491–8.
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma. 2013;43(1110):11.10.1-11.10.33.
den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum Mutat. 2016 Jun;37(6):564–9.
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med Off J Am Coll Med Genet. 2015 May;17(5):405–24.
Rehder C, Bean LJH, Bick D, Chao E, Chung W, Das S, et al. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med Off J Am Coll Med Genet. 2021 Aug;23(8):1399–415.
Kumar A, Chordia N. In Silico PCR Primer Designing and Validation BT - PCR Primer Design. In: Basu C, editor. New York, NY: Springer New York; 2015. p. 143–51. Available from: https://doi.org/10.1007/978-1-4939-2365-6_10
Callén E, Casado JA, Tischkowitz MD, Bueren JA, Creus A, Marcos R, et al. A common founder mutation in FANCA underlies the world’s highest prevalence of Fanconi anemia in Gypsy families from Spain. Blood. 2005 Mar;105(5):1946–9.
Whitney MA, Jakobs P, Kaback M, Moses RE, Grompe M. The Ashkenazi Jewish Fanconi anemia mutation: incidence among patients and carrier frequency in the at-risk population. Hum Mutat. 1994;3(4):339–41.
García-de Teresa B, Frias S, Molina B, Villarreal MT, Rodriguez A, Carnevale A, et al. FANCC Dutch founder mutation in a Mennonite family from Tamaulipas, México. Mol Genet genomic Med. 2019 Jun;7(6):e710.
Reyes P, García-de Teresa B, Juárez U, Pérez-Villatoro F, Fiesco-Roa MO, Rodríguez A, et al. Fanconi Anemia Patients from an Indigenous Community in Mexico Carry a New Founder Pathogenic Variant in FANCG. Int J Mol Sci. 2022 Feb;23(4).
Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med Off J Am Coll Med Genet. 2011 Jul;13(7):680–5.
Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen--the Clinical Genome Resource. N Engl J Med. 2015 Jun;372(23):2235–42.
Matthijs G, Souche E, Alders M, Corveleyn A, Eck S, Feenstra I, et al. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016 Oct;24(10):1515.
Smith K, Martindale J, Wallis Y, Bown N, Leo N, Creswell L, et al. General genetic laboratory reporting recommendations. Birmingham Assoc Clin Genet Sci. 2015;11.
Directors ABO. Laboratory and clinical genomic data sharing is crucial to improving genetic health care: a position statement of the American College of Medical Genetics and Genomics. Genet Med Off J Am Coll Med Genet. 2017 Jul;19(7):721–2.
Federici G, Soddu S. Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers. J Exp Clin Cancer Res. 2020 Mar;39(1):46.
Gregory JJJ, Wagner JE, Verlander PC, Levran O, Batish SD, Eide CR, et al. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci U S A. 2001 Feb;98(5):2532–7.
Ikeda H, Matsushita M, Waisfisz Q, Kinoshita A, Oostra AB, Nieuwint AWM, et al. Genetic reversion in an acute myelogenous leukemia cell line from a Fanconi anemia patient with biallelic mutations in BRCA2. Cancer Res. 2003 May;63(10):2688–94.