SARS-CoV-2 y metahemoglobinemia en el periodo neonatal. Reporte de casos
Resumen
INTRODUCCIÓN: La metahemoglobinemia (MetaHb) es una condición donde el eritrocito es incapaz de liberar oxígeno hacia los tejidos, causando de manera secundaria hipoxia tisular y acidosis metabólica con lactato elevado. En pacientes adultos con infección por SARS-CoV2 se han reportado algunos casos de coexistencia de MetaHb e hipoxemia refractaria; aunque no hay reportes de esta asociación en la etapa neonatal.
CASOS CLÍNICOS: Presentamos dos casos en recién nacidos prematuros con infección por SARS-CoV-2, que presentaron deterioro multisistémico y MetaHb en la segunda a tercera semana de vida, sin aislamiento microbiológico, ni relación temporal condesencadenantes conocidos de MetaHb, niveles normales de G6PD y con respuesta parcial a la exanguinotransfusión o infusión de azul de metileno.
CONCLUSIONES: La relación de MetaHb e infección por SARS-CoV-2 es aún desconocida, pero se ha documentado recientemente su actividad proinflamatoria, que puede incrementar la tormenta de citocinas y empeorar la evolución y el pronóstico del paciente con infección moderada a severa. Por lo anterior, son necesarios más estudios de dichas asociaciones para poder realizar intervenciones oportunas.
PALABRAS CLAVE: SARS-Cov2, COVID-19 neonatal, Recién nacido, metahemoglobinemia neonata
Citas
De Bernardo, G., et al., The clinical course of SARS-CoV-2 positive neonates. J Perinatol, 2020. 40(10): p. 1462-1469.
Trevisanuto, D., et al., Coronavirus infection in neonates: a systematic review. Arch Dis Child Fetal Neonatal Ed, 2021. 106(3): p. 330-335.
Vardhelli, V., et al., Perinatal COVID-19: review of current evidence and practical approach towards prevention and management. Eur J Pediatr, 2021. 180(4): p. 1009-1031.
Palmer, K., et al., Methemoglobinemia in Patient with G6PD Deficiency and SARS-CoV-2 Infection. Emerg Infect Dis, 2020. 26(9).
Faisal, H., A. Bloom, and A.O. Gaber, Unexplained Methemoglobinemia in Coronavirus Disease 2019: A Case Report. A A Pract, 2020. 14(9): p. e01287.
Naymagon, L., et al., The emergence of methemoglobinemia amidst the COVID-19 pandemic. Am J Hematol, 2020. 95(8): p. E196-E197.
Pagana, K., T. Pagana, and T. Pagana, Mosby's diagnostic and laboratory test reference. 15. ed. 2020, Philadelphia: Elsevier, Inc. pages cm.
Rechetzki, K.F., et al., Reference values for methemoglobin concentrations in children. Rev Bras Hematol Hemoter, 2012. 34(1): p. 14-6.
Gong, A.K., Near-patient measurements of methemoglobin, oxygen saturation, and total hemoglobin: evaluation of a new instrument for adult and neonatal intensive care. Crit Care Med, 1995. 23(1): p. 193-201.
Scholkmann, F., et al., The Role of Methemoglobin and Carboxyhemoglobin in COVID-19: A Review. J Clin Med, 2020. 10(1).
Ludlow, J.T., R.G. Wilkerson, and T.M. Nappe, Methemoglobinemia, in StatPearls. 2021: Treasure Island (FL).
Ash-Bernal, R., R. Wise, and S.M. Wright, Acquired methemoglobinemia: a retrospective series of 138 cases at 2 teaching hospitals. Medicine (Baltimore), 2004. 83(5): p. 265-273.
Krafte-Jacobs, B., et al., Circulating methemoglobin and nitrite/nitrate concentrations as indicators of nitric oxide overproduction in critically ill children with septic shock. Crit Care Med, 1997. 25(9): p. 1588-93.
Ohashi, K., et al., Elevated methemoglobin in patients with sepsis. Acta Anaesthesiol Scand, 1998. 42(6): p. 713-6.
Kugler, W., et al., Molecular basis of recessive congenital methemoglobinemia, types I and II: Exon skipping and three novel missense mutations in the NADH-cytochrome b5 reductase (diaphorase 1) gene. Hum Mutat, 2001. 17(4): p. 348.
Shin, C., et al., Exon sequencing of the alpha-2-globin gene for the differential diagnosis of central cyanosis in newborns: a case report. BMC Pediatr, 2019. 19(1): p. 221.
McDonagh, E.M., et al., PharmGKB summary: methylene blue pathway. Pharmacogenet Genomics, 2013. 23(9): p. 498-508.
Gala, H.C. and A. Madave, An Unusual Case of Neonatal Methemoglobinemia. Indian Pediatr, 2017. 54(2): p. 163.
Zenk, K.E., Use of methylene blue to treat methemoglobinemia in infancy. Neonatal Netw, 2001. 20(5): p. 62-8.
Skold, A., D.L. Cosco, and R. Klein, Methemoglobinemia: pathogenesis, diagnosis, and management. South Med J, 2011. 104(11): p. 757-61.
Shafer, G., A. Arunachalam, and P. Lohmann, Newborn with Perinatal Naphthalene Toxicity after Maternal Ingestion of Mothballs during Pregnancy. Neonatology, 2020. 117(1): p. 127-130.
Allegaert, K., et al., Methemoglobinemia and hemolysis after enteral administration of methylene blue in a preterm infant: relevance for pediatric surgeons. J Pediatr Surg, 2004. 39(1): p. E35-7.
Avery, A.A., Infantile methemoglobinemia: reexamining the role of drinking water nitrates. Environ Health Perspect, 1999. 107(7): p. 583-6.
Schierz, I.A.M., et al., Methemoglobinemia Associated with Late-Onset Neonatal Sepsis: A Single-Center Experience. Am J Perinatol, 2019. 36(14): p. 1510-1513.
Kjellgard, C., S. Westphal, and A. Flisberg, [Intoxication with prilocaine/lidocaine can cause serious methemoglobinemia]. Lakartidningen, 2019. 116.
Bayat, A. and R.W. Kosinski, Methemoglobinemia in a newborn: a case report. Pediatr Dent, 2011. 33(3): p. 252-4.
Andrade, S.J., et al., Neonatal Acquired Methemoglobinemia - Can Broad Spectrum Antibiotics be Implicated? Indian J Pediatr, 2019. 86(7): p. 663.
Merieau, E., et al., [Metoclopramide and neonatal methaemoglobinemia]. Arch Pediatr, 2005. 12(4): p. 438-41.
Lien, Y.H., Y.C. Lin, and R.J. Chen, A case report of acquired methemoglobinemia rescued by veno-venous extracorporeal membrane oxygenation. Medicine (Baltimore), 2021. 100(15): p. e25522.
Centorrino, R., et al., Life-Threatening Extreme Methemoglobinemia during Standard Dose Nitric Oxide Therapy. Neonatology, 2019. 116(3): p. 295-298.
Choo, S.Y., Rapidly rising methemoglobinemia in a patient with severe COVID-19 treated successfully with red cell exchange transfusion. Ther Apher Dial, 2020.
Kuipers, M.T., et al., Glucose-6-phosphate dehydrogenase deficiency-associated hemolysis and methemoglobinemia in a COVID-19 patient treated with chloroquine. Am J Hematol, 2020. 95(8): p. E194-E196.
Kreis, N.N., et al., A Message from the Human Placenta: Structural and Immunomodulatory Defense against SARS-CoV-2. Cells, 2020. 9(8).
Suratannon, N., et al., COVID-19 in children: Heterogeneity within the disease and hypothetical pathogenesis. Asian Pac J Allergy Immunol, 2020. 38(3): p. 170-177.
Lopes, D.V., et al., Methemoglobinemia and hemolytic anemia after COVID-19 infection without identifiable eliciting drug: A case-report. IDCases, 2021. 23: p. e01013.
Bozza, M.T. and V. Jeney, Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front Immunol, 2020. 11: p. 1323.