Síndromes de falla medular hereditarios: etiología, fisiopatología, diagnóstico y tratamiento

Moisés Fiesco Roa, Angélica Monsivais Orozco, Alfredo Rodriguez, Sara Frías, Benilde Garcia de Teresa

Resumen


Los síndromes de falla medular hereditarios son un grupo heterogéneo de enfermedades genéticas debidas a variantes patogénicas en genes relacionados con la hematopoyesis. Los estudios de análisis genómico han permitido delimitar, al menos, 13 síndromes de falla medular hereditarios debidamente caracterizados. El fenotipo de estas entidades es un espectro que va desde críptico, hasta padecimientos con un cuadro clínico muy evidente. Además, pueden cursar con manifestaciones extramedulares, como cáncer o alteraciones funcionales y del desarrollo. Este tipo de padecimientos requiere un alto índice de sospecha, que debe plantearse ante cualquier paciente con alteraciones en la hematopoyesis, incluso si no hay manifestaciones extramedulares o éstas no son evidentes. Los síndromes de falla medular hereditarios son enfermedades complejas cuyo proceso diagnóstico y tratamiento requiere de un equipo interdisciplinario de especialistas, como los que se encuentran en centros de atención de tercer nivel. En esta revisión se exponen las características etiológicas, fisiopatológicas, clínicas y paraclínicas de los principales síndromes de falla medular hereditarios.


Texto completo:

PDF

Referencias


Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br J Haematol. 2017;177(4):526–42.

Shimamura A. Clinical approach to marrow failure. Hematology Am Soc Hematol Educ Program. 2009;329–37.

Kallen ME, Dulau-Florea A, Wang W, Calvo KR. Acquired and germline predisposition to bone marrow failure: Diagnostic features and clinical implications. Semin Hematol [Internet]. 2019;56(1):69–82. Available from: https://doi.org/10.1053/j.seminhematol.2018.05.016

Sieff CA. Introduction to Acquired and Inherited Bone Marrow Failure. Hematol Oncol Clin North Am [Internet]. 2018 Aug;32(4):569–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889858818307160

Alter BP, Rosenberg PS, Day T, Menzel S, Giri N, Savage SA, et al. Genetic regulation of fetal haemoglobin in inherited bone marrow failure syndromes. Br J Haematol. 2013;162(4):542–6.

Bogliolo M, Bluteau D, Lespinasse J, Pujol R, Vasquez N, D’Enghien CD, et al. Biallelic truncating FANCM mutations cause early-onset cancer but not Fanconi anemia. Genet Med. 2018 Apr 1;20(4):458–63.

Khincha PP, Savage SA. Neonatal manifestations of inherited bone marrow failure syndromes. Semin Fetal Neonatal Med [Internet]. 2016;21(1):57–65. Available from: http://dx.doi.org/10.1016/j.siny.2015.12.003

Bluteau O, Sebert M, Leblanc T, De Latour RP, Quentin S, Lainey E, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018;131(7):717–32.

Fiesco-Roa MO, Giri N, McReynolds LJ, Best AF, Alter BP. Genotype-phenotype associations in Fanconi anemia: A literature review. Blood Rev. 2019;37.

Kutler DI, Singh B, Satagopan J, Batish D, Berwick M, Giampietro PF, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood. 2003;101:1249–56.

Rodríguez A, D’Andrea A. Fanconi anemia pathway. Curr Biol [Internet]. 2017 Sep;27(18):R986–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960982217309478

Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the national cancer institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103(1):30–9.

Savage SA, Dufour C. Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. Semin Hematol [Internet]. 2017;54(2):105–14. Available from: http://dx.doi.org/10.1053/j.seminhematol.2017.04.004

Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet [Internet]. 2012 Oct 11;13(10):693–704. Available from: http://www.nature.com/articles/nrg3246

Wallace DJ. Telomere diseases. N Engl J Med. 2010;362(12):1150.

Alter BP, Giri N, Savage SA, Rosenberg PS. Telomere length in inherited bone marrow failure syndromes. Haematologica. 2015;100(1):49–54.

Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol [Internet]. 2019 Dec 2;12(12):1037–52. Available from: https://www.tandfonline.com/doi/full/10.1080/17474086.2019.1662720

Nelson AS, Myers KC. Diagnosis, Treatment, and Molecular Pathology of Shwachman-Diamond Syndrome. Hematol Oncol Clin North Am [Internet]. 2018 Aug;32(4):687–700. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889858818307147

Myers KC, Bolyard AA, Otto B, Wong TE, Jones AT, Harris RE, et al. Variable Clinical Presentation of Shwachman–Diamond Syndrome: Update from the North American Shwachman–Diamond Syndrome Registry. J Pediatr [Internet]. 2014 Apr;164(4):866–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022347613014741

In K, Zaini MA, Müller C, Warren AJ, von Lindern M, Calkhoven CF. Shwachman–Bodian–Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EBPα and C/EBPβ mRNAs. Nucleic Acids Res [Internet]. 2016 May 19;44(9):4134–46. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw005

NIHRANE A, SEZGIN G, DSILVA S, DELLORUSSO P, YAMAMOTO K, ELLIS S, et al. Depletion of the Shwachman-Diamond syndrome gene product, SBDS, leads to growth inhibition and increased expression of OPG and VEGF-A. Blood Cells, Mol Dis [Internet]. 2009 Jan;42(1):85–91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1079979608002039

Austin KM, Gupta ML, Coats SA, Tulpule A, Mostoslavsky G, Balazs AB, et al. Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. J Clin Invest [Internet]. 2008 Apr 1;118(4):1511–8. Available from: http://www.jci.org/articles/view/33764

Orelio C, Verkuijlen P, Geissler J, van den Berg TK, Kuijpers TW. SBDS Expression and Localization at the Mitotic Spindle in Human Myeloid Progenitors. Ben-Jacob E, editor. PLoS One [Internet]. 2009 Sep 17;4(9):e7084. Available from: https://dx.plos.org/10.1371/journal.pone.0007084

Vella A, D’aversa E, Api M, Breveglieri G, Allegri M, Giacomazzi A, et al. MTOR and STAT3 pathway hyper-activation is associated with elevated interleukin-6 levels in patients with shwachman-diamond syndrome: Further evidence of lymphoid lineage impairment. Cancers (Basel). 2020;12(3).

Geddis AE. Congenital amegakaryocytic thrombocytopenia. Pediatr Blood Cancer. 2011;57(2):199–203.

Geddis AE. Inherited Thrombocytopenia: Congenital Amegakaryocytic Thrombocytopenia and Thrombocytopenia With Absent Radii. Semin Hematol. 2006;43(3):196–203.

Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A, et al. C-Mpl Mutations Are the Cause of Congenital Amegakaryocytic Thrombocytopenia. Blood. 2001;97(1):139–46.

Mukai HY, Kojima H, Todokoro K, Tahara T, Kato T, Hasegawa Y, et al. Serum thrombopoietin (TPO) levels in patients with amegakaryocytic thrombocytopenia are much higher than those with immune thrombocytopenic purpura. Thromb Haemost [Internet]. 1996 Nov;76(5):675–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8950771

Engidaye G, Melku M, Enawgaw B. Diamond blackfan anemia: Genetics, pathogenesis, diagnosis and treatment. Electron J Int Fed Clin Chem Lab Med. 2019;30(1):67–81.

Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev [Internet]. 2010;24(3):101–22. Available from: http://dx.doi.org/10.1016/j.blre.2010.03.002

Spoor J, Farajifard H, Rezaei N. Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol [Internet]. 2019;133(October 2017):149–62. Available from: https://doi.org/10.1016/j.critrevonc.2018.10.003

Welte K, Zeidler C, Dale DC. Severe Congenital Neutropenia. Semin Hematol. 2006;43(3):189–95.

Yakisan E, Schirg E, Zeidler C, Bishop NJ, Reiter A, Hirt A, et al. High incidence of significant bone loss in patients with severe congenital neutropenia (Kostmann’s syndrome). J Pediatr [Internet]. 1997 Oct;131(4):592–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022347697700684

Donadieu J, Beaupain B, Fenneteau O, Bellanné-Chantelot C. Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. Br J Haematol. 2017;179(4):557–74.

Greenhalgh KL, Howell RT, Bottani A, Ancliff PJ, Brunner HG, Verschuuren-Bemelmans CC, et al. Thrombocytopenia-absent radius syndrome: A clinical genetic study. J Med Genet. 2002;39(12):876–81.

Ballmaier M, Germeshausen M. Advances in the understanding of congenital amegakaryocytic thrombocytopenia. Br J Haematol. 2009;146(1):3–16.

Ballmaier M, Schulze H, Strauss G, Cherkaoui K, Wittner N, Lynen S, et al. Thrombopoietin in patients with congenital thrombocytopenia and absent radii: elevated serum levels, normal receptor expression, but defective reactivity to thrombopoietin. Blood [Internet]. 1997 Jul 15;90(2):612–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9226161

Albers CA, Newbury-Ecob R, Ouwehand WH, Ghevaert C. New insights into the genetic basis of TAR (thrombocytopenia-absent radii) syndrome. Curr Opin Genet Dev [Internet]. 2013;23(3):316–23. Available from: http://dx.doi.org/10.1016/j.gde.2013.02.015

Calado RT, Clé D V. Treatment of inherited bone marrow failure syndromes beyond transplantation. Hematology. 2017;2017(1):96–101.

Vlachos A, Muir E. How I treat Diamond-Blackfan anemia. Blood. 2010;116(19):3715–23.

Dale DC. Hematopoietic growth factors for the treatment of severe chronic neutropenia. Stem Cells [Internet]. 1995;13(2):94–100. Available from: http://doi.wiley.com/10.1002/stem.5530130201

Scagni P, Saracco P, Timeus F, Farinasso L, Dall’Aglio M, Bosa EM, et al. Use of recombinant granulocyte colony-stimulating factor in Fanconi’s anemia. Haematologica [Internet]. 1998 May;83(5):432–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9658728

Alter BP. Inherited bone marrow failure syndromes: Considerations pre- and posttransplant. Hematology. 2017;2017(1):88–95.

McReynolds LJ, Yang Y, Yuen Wong H, Tang J, Zhang Y, Mulé MP, et al. MDS-associated mutations in germline GATA2 mutated patients with hematologic manifestations. Leuk Res [Internet]. 2019;76(August 2018):70–5. Available from: https://doi.org/10.1016/j.leukres.2018.11.013

Chen DH, Below JE, Shimamura A, Keel SB, Matsushita M, Wolff J, et al. Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L. Am J Hum Genet [Internet]. 2016;98(6):1146–58. Available from: http://dx.doi.org/10.1016/j.ajhg.2016.04.009

Veitia RA. MIRAGE Syndrome: Phenotypic Rescue by Somatic Mutation and Selection. Trends Mol Med [Internet]. 2019;25(11):937–40. Available from: https://doi.org/10.1016/j.molmed.2019.08.008

Thompson AA, Nguyen LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet [Internet]. 2000 Dec;26(4):397–8. Available from: http://www.nature.com/articles/ng1200_397

Niihori T, Ouchi-Uchiyama M, Sasahara Y, Kaneko T, Hashii Y, Irie M, et al. Mutations in MECOM, Encoding Oncoprotein EVI1, Cause Radioulnar Synostosis with Amegakaryocytic Thrombocytopenia. Am J Hum Genet [Internet]. 2015 Dec;97(6):848–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002929715004127

Hashmi S, Allen C, Klaassen R, Fernandez C, Yanofsky R, Shereck E, et al. Comparative analysis of Shwachman-Diamond syndrome to other inherited bone marrow failure syndromes and genotype-phenotype correlation. Clin Genet [Internet]. 2011 May;79(5):448–58. Available from: http://doi.wiley.com/10.1111/j.1399-0004.2010.01468.x

Geddis AE. Congenital Amegakaryocytic Thrombocytopenia and Thrombocytopenia with Absent Radii. Hematol Oncol Clin North Am [Internet]. 2009 Apr;23(2):321–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889858809000136

Risitano AM, Marotta S, Calzone R, Grimaldi F, Zatterale A. Twenty years of the Italian Fanconi Anemia Registry: Where we stand and what remains to be learned. Haematologica. 2016;101(3):319–27.

Vulliamy T, Dokal I. Dyskeratosis Congenita. Semin Hematol [Internet]. 2006 Jul;43(3):157–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0037196306000758

Ikuse T, Kudo T, Arai K, Fujii Y, Ida S, Ishii T, et al. Shwachman-Diamond syndrome: Nationwide survey and systematic review in Japan. Pediatr Int [Internet]. 2018 Aug;60(8):719–26. Available from: http://doi.wiley.com/10.1111/ped.13601

King S, Germeshausen M, Strauss G, Welte K, Ballmaier M. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol [Internet]. 2005 Dec;131(5):636–44. Available from: http://doi.wiley.com/10.1111/j.1365-2141.2005.05819.x

Savoia A, Dufour C, Locatelli F, Noris P, Ambaglio C, Rosti V, et al. Congenital amegakaryocytic thrombocytopenia: clinical and biological consequences of five novel mutations. Haematologica [Internet]. 2007 Sep 1;92(9):1186–93. Available from: http://www.haematologica.org/cgi/doi/10.3324/haematol.11425

Gong R-L, Wu J, Chen T-X. Clinical, Laboratory, and Molecular Characteristics and Remission Status in Children With Severe Congenital and Non-congenital Neutropenia. Front Pediatr [Internet]. 2018 Oct 16;6. Available from: https://www.frontiersin.org/article/10.3389/fped.2018.00305/full

No Title [Internet]. p. DBA Foundation. Available from: https://dbafoundation.org/learn-more/diagnosis/

No Title [Internet]. p. TAR syndrome Rare Diseases. Available from: https://rarediseases.org/rare-diseases/thrombocytopenia-absent-radius-syndrome/

Kerr EN, Ellis L, Dupuis A, Rommens JM, Durie PR. The Behavioral Phenotype of School-Age Children with Shwachman Diamond Syndrome Indicates Neurocognitive Dysfunction with Loss of Shwachman-Bodian-Diamond Syndrome Gene Function. J Pediatr [Internet]. 2010 Mar;156(3):433-438.e1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022347609009019

Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: A report from the Diamond Blackfan anemia registry. Blood. 2012;119(16):3815–9.

Martínez-Frías ML, Bermejo Sánchez E, García García A, Pérez Fernández JL, Cucalón Manzanos F, Calvo Aguilar MJ, et al. [An epidemiological study of the thrombocytopenia with radial aplasia syndrome (TAR) in Spain]. An Esp Pediatr [Internet]. 1998 Dec;49(6):619–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9972626

Dokal I, Vulliamy T, Mason P, Bessler M. Clinical utility gene card for: Dyskeratosis congenita – update 2015. Eur J Hum Genet [Internet]. 2015 Apr 3;23(4):558–558. Available from: http://www.nature.com/articles/ejhg2014170

Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol. 2000;110(4):768–79.

Calado RT, Regal JA, Kleiner DE, Schrump DS, Peterson NR, Pons V, et al. A Spectrum of Severe Familial Liver Disorders Associate with Telomerase Mutations. Klein R, editor. PLoS One [Internet]. 2009 Nov 20;4(11):e7926. Available from: https://dx.plos.org/10.1371/journal.pone.0007926

Skórka A, Bielicka-Cymermann J, Gieruszczak-Białek D, Korniszewski L. Thrombocytopenia-absent radius (tar) syndrome: a case with agenesis of corpus callosum, hypoplasia of cerebellar vermis and horseshoe kidney. Genet Couns [Internet]. 2005;16(4):377–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16440880

Manukjan G, Bösing H, Schmugge M, Strauß G, Schulze H. Impact of genetic variants on haematopoiesis in patients with thrombocytopenia absent radii (TAR) syndrome. Br J Haematol [Internet]. 2017 Nov;179(4):606–17. Available from: http://doi.wiley.com/10.1111/bjh.14913

West AH, Churpek JE. Old and new tools in the clinical diagnosis of inherited bone marrow failure syndromes. Hematology [Internet]. 2017 Dec 8;2017(1):79–87. Available from: https://ashpublications.org/hematology/article/2017/1/79/21056/Old-and-new-tools-in-the-clinical-diagnosis-of




DOI: http://dx.doi.org/10.18233/APM42No4pp192-2072110

Enlaces refback

  • No hay ningún enlace refback.